
Acquiring Problem-Solving Knowledge from End Users:
Putting Interdependency Models to the Test

Jihie Kim and Yolanda Gil
Information Sciences Institute and Computer Science Department

University of Southern California
4676 Admiralty Way

Marina del Rey, CA 90292, U.S.A.
jihie@isi.edu, gil@isi.edu

To appear in Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-2000)

Abstract

Developing tools that allow non-programmers to enter
knowledge has been an ongoing challenge for AI. In recent
years researchers have investigated a variety of promising ap-
proaches to knowledge acquisition (KA), but they have often
been driven by the needs of knowledge engineers rather than
by end users. This paper reports on a series of experiments
that we conducted in order to understand how far a particular
KA tool that we are developing is from meeting the needs
of end users, and to collect valuable feedback to motivate
our future research. This KA tool, called EMeD, exploits
Interdependency Models that relate individual components
of the knowledge base in order to guide users in specifying
problem-solving knowledge. We describe how our experi-
ments helped us addressseveral questions and hypotheses re-
garding the acquisition of problem-solving knowledge from
end users and the benefits of Interdependency Models, and
discuss what we learned in terms of improving not only
our KA tools but also about KA research and experimental
methodology.

Introduction
Acquiring knowledge from end users (i.e., ordinary users
without formal training in computer science) remains a
challenging area for AI research. Many knowledge acqui-
sition approaches target knowledge engineers (Wielinga,
Schreiber, & Breuker 1992; Yost 1993; Fikes, Farquhar,
& Rice 1997), and those that have been developed for
end users (Eriksson et al. 1995; Marcus & McDer-
mott 1989) only allow them to specify certain kinds of
knowledge, i.e., domain-specific knowledge regarding in-
stances and classes but not problem-solving knowledge
about how to solve tasks. Alternative approaches apply
learning and induction techniques to examples provided
by users in a natural way as they are performing a task
(Mitchell, Mahadevan, & Steinberg 1985; Cypher 1993;
Bareiss, Porter, & Murray 1989). Although these tools may
be more accessible to end users, they are only useful in
circumstances where users can provide a variety of exam-
ples. When examples are not readily available, we may need
knowledge acquisition (KA) tools for direct authoring.

In recent years, researchers have investigated a variety of
new approaches to develop KA tools, in many cases targeted

Copyright c2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

to end users though in practice motivated by knowledge en-
gineers. Few user studies have been conducted (Yost 1993;
Tallis & Gil 1999; Kim & Gil 1999), and the participants
are typically knowledge engineers. Without studies of the
effectiveness of KA approaches and tools for end users, it
is hard to assess the actual requirement of end users and our
progress towards satisfying them. One of the challenges
of this work is to devise a methodology and experimental
procedure for conducting user studies of KA tools.

As KA researchers, we wanted to test our approach and
KA tools with end users. A central theme of our KA research
has been how KA tools can exploit Interdependency Models
(Swartout & Gil 1995) that relate individual components
of the knowledge base in order to develop expectations
of what users need to add next. To give an example of
interdependencies, suppose that the user is building a KBS
for a configuration task that finds constraint violations and
then applies fixes to them (Marcus & McDermott 1989).
When the user defines a new constraint, the KA tool has
the expectation that the user should specify possible fixes,
because there is an interdependency between the problem-
solving knowledge for finding fixes for violated constraints
and the definitions of constraints and their possible fixes.

EMeD (EXPECT Method Developer) (Kim & Gil 1999),
a knowledge acquisition tool to acquire problem-solving
knowledge, exploits Interdependency Models to guide users
by helping them understand the relationships among the in-
dividual elements in the knowledge base. The expectations
result from enforcing constraints in the knowledge repre-
sentation system, working out incrementally the interde-
pendencies among the different components of the KB. Our
hypothesis is that Interdependency Models allow users to
enter more knowledge faster, particularly for end users.

In addition to the goal of evaluating the role of Interdepen-
dency Models, we had more general questions. Users with
different degrees of exposure to computing environments
would probably perform differently. But in what ways?
How much training and of what kind is needed before they
can make reasonably complex additions to a knowledge
base with a KA tool? What aspects of a knowledge base
modification task are more challenging to end users? What
kinds of interfaces and interaction modalities would be ap-
propriate and in what ways should they be different from

((name method1)
(capability (check (obj (?f is (spec-of force-ratio)))

(of (?t is (spec-of main-task)))
(in (?c is (inst-of COA)))))

(result-type (inst-of yes-no))
(method (check (obj (spec-of force-ratio))

(of (main-task-of (close-statement-of ?c)))))

((name method2)
(capability (check (obj (spec-of (force-ratio)))

(of (?t is (inst-of military-task)))))
(result-type (inst-of yes-no))
(method (is-less-or-equal

(obj (estimate (obj (spec-of required-force-ratio))
(for ?t)))

(than (estimate (obj (spec-of available-force-ratio))
(for ?t))))))

((name method4)
(capability (estimate (obj (?f is (spec-of available-force-ratio)))

(for (?t is (inst-of military-task)))))
(result-type (inst-of number))
(method ….))

((name method3)
(capability (estimate (obj (?f is (spec-of required-force-ratio)))

(for (?s is (inst-of military-task)))))
(result-type (inst-of number))
(method …))

Figure 1: Examples of EXPECT Problem-Solving Methods.

those that knowledge engineers find useful?
This paper reports on a study to evaluate our KA tools

with domain experts (end users) who extended a knowledge
base in their area of expertise. This study was conducted
as part of an evaluation of the DARPA High Performance
Knowledge Bases program (Cohen et al. 1998). We also
present our experimental design and the preliminary study
with users with varying degrees of background in AI and
computer science, which was performed before the evalua-
tion. We analyze the results in terms of our initial questions
and hypotheses, and extract some general conclusions that
motivate future directions of KA research.

EMeD: Exploiting Interdependency Models to
Acquire Problem-Solving Knowledge

EMeD (EXPECT Method Developer) (Kim & Gil 1999)
is a knowledge acquisition tool that allows users to specify
problem-solving knowledge. This section summarizes the
functionalityof the tool, further details and comparison with
other tools are provided in (Kim & Gil 1999).

EMeD is built within the EXPECT framework (Gil &
Melz 1996; Swartout & Gil 1995). EXPECT’s knowledge
base contains ontologies that describe the objects in a do-
main, and problem-solving methods that describe how tasks
are achieved. Tasks are specified as goal hierarchies, where
a goal is broken into smaller subgoals all the way down
to primitive or basic tasks. The problem-solving methods
specify how the decomposition takes place. EXPECT pro-
vides a rich language that was developed with understand-
ability and intelligibility in mind, since it was used to gen-
erate adequate explanations for knowledge-based systems
(Swartout, Paris, & Moore 1991). Figure 1 shows some
examples of EXPECT methods. Each problem-solving

Point out
missing knowledge

Show method/submethod
relationship

Propose initial sketch
of new method

Editor starts
with the initial sketch

Figure 2: The Method Proposer of the EMeD Acquisition
Interface.

method has a capability that describes what the method
can achieve, a result type that specifies the kind of result
that the method will return upon invocation, and a method
body that specifies the procedure to achieve the capability.
The method body includes constructs for invoking subgoals
to be resolved with other methods, retrieving values of con-
cept roles, and control constructs such as conditional ex-
pressions and iteration. The arrows in the figure indicate
some interdependencies, where a head of an arrow points
to a sub-method which can solve a given subgoal. For ex-
ample, the second method shown in the Figure 1 checks the
force ratio of a given military task by comparing its required
force ratio and the available force ratio. The result should
be yes or no depending on whether the required ratio is less
than the available ratio.

EXPECT derives an Interdependency Model (IM) by an-
alyzing how individual components of a knowledge base are
related and interact when they are used to solve a task. An
example of interdependency between two methods is that
one may be used by the other one to achieve a subgoal in
its method body. Two methods can also be related because
they have similar capabilities. EMeD exploits IM in three
ways: (1) pointing out missing pieces at a given time; (2)
predicting what pieces are related and how; (3) detecting in-
consistencies among the definitions of the various elements
in the knowledge base.

When users define a new problem-solving method, EMeD
first finds the interdependencies and inconsistencies within
that element, such as if any undefined variable is used in the
body of the method. If there are any errors within a method
definition, the Local-Error Detector displays the errors and
it also highlightsthe incorrect definitionsso that the user can
be alerted promptly. The Global-Error Detector analyzes
the knowledge base further and detects more subtle errors
that occur in the context of problem solving.

By keeping the interdependencies among the problem-
solving methods and factual knowledge, and analyzing in-

terdependencies between each method and its sub-methods,
the Method Sub-method Analyzer in EMeD can detect miss-
ing links and can find undefined problem-solving methods
that need to be added. EMeD highlights those missing
parts and proposes an initial version of the new methods, as
shown in Figure 2. In this example, a method for checking
the force ratio for an assigned task needs to compare the
available force ratio (i.e, ratio between blue units and red
units) with the force ratio required for that task. When the
system is missing the knowledge for the available ratio (i.e.,
missing method4), the Method Proposer in EMeD notifies
the user with a red diamond (a diamond shown in Figure 2
on the top) and displays the ones needed to be defined. It
can also construct an initial sketch of the capability and the
result type of the new method to be defined. What the new
method has to do (capability of the method) is to estimate
the available force ratio for a given military task. Since we
are computing a ratio, the result type suggested is a number
(method sketch in Figure 2). Users can search for existing
methods that can achieve a given kind of capability using
the Method-Capability Hierarchy, a hierarchy of method
capabilities based on subsumption relations of their goal
names and their parameters.

Finally, EMeD can propose how the methods can be put
together. By using the Method Sub-method Analyzer for
analyzing the interdependencies among the KB elements, it
can detect still unused problem-solving methods and pro-
pose how they may be potentially used in the system.

Experimental Design
As described in the introduction, current KA research lacks
evaluation methodology. In recognition of the need for
evaluation, the community started to design a set of standard
task domains that different groups would implement and
use to compare their work. These Sisyphus experiments
(Schreiber & Birmingham 1996; Sisyphus 2000) show how
different groups would compare their approaches for the
same given task, but most approaches lacked a KA tool
and no user evaluations were conducted. Other evaluations
have tested the use and reuse of problem-solving methods,
but they measure code reuse rather than how users benefit
from KA tools (Runkel & Birmingham 1995; Eriksson et
al. 1995). Other KA work evaluated the tool itself. TAQL’s
performance was evaluated by comparing it with some basic
data that had been reported for other KA tools (Yost 1993).
There were some user studies on ontology editors (Terveen
1991). In contrast with our work, these evaluations were
done with knowledge engineers. Also since the experiments
were not controlled studies, the results could not be causally
linked to the features in the tools.

Our research group has conducted some of the few user
studies to date (Tallis & Gil 1999; Kim & Gil 1999), and
as a result we have proposed a methodology (Tallis, Kim,
& Gil 1999) that we use in our own work. It turns our that
the lack of user studies is not uncommon in the software
sciences (Zelkowitz & Wallace 1998). In developing a
methodology for evaluation of KA tools, we continue to
draw from the experiences in other areas (Self 1993; Basili,

Selby, & Hutchens 1986; Olson & Moran 1998).
Our goal was to test two main hypotheses, both concerned

with Interdependency Models (IMs):

Hypothesis I: A KA tool that exploits IMs enables
users to make a wider range of changes to a knowl-
edge base because without the guidance provided with
IMs users will be unable to understand how the new
knowledge fits with the existing knowledge and com-
plete the modification.
Hypothesis II: A KA tool that exploits IMs enables
users to enter knowledge faster because it can use the
IMs to point out to the user at any given time what
additional knowledge still needs to be provided.

There are three important features of our experiment de-
sign:

� In order to collect data comparable across users and tasks,
we used a controlled experiment. Thus, we designed
modification tasks to be given to the participants based
on typical tasks that we encountered ourselves as we
developed the initial knowledge base.

� Given the hypotheses, we needed to collect and compare
data about how users would perform these tasks under
two conditions: with a tool that exploits IMs and with a
tool that does not (this would be the control group). It is
very important that the use of IMs be the only difference
between both conditions. We designed an ablated version
of EMeD that presented the same EMeD interface but did
not provide any of the assistance based on IMs.

� Typically, there are severe resource constraints in terms
of how many users are available to do the experiments
(it typically takes several sessions over a period of days).
In order to minimize the effect of individual differences
given the small number of subjects, we performed within-
subject experiments. Each subject performed two differ-
ent but comparable sets of tasks (each involving the same
kind of KA tasks but using a different part of the knowl-
edge base), one with each version of the tool.

In order to determine when a KA task was completed, the
subjects were asked to solve some problems and examine
the output to make sure they obtained the expected results.
In addition, after each experiment, we checked by hand the
knowledge added by the subjects.

Participants were given different combinations of tools
and tasks and in different order, so as to minimize trans-
fer effects (i.e., where they would remember how they did
something the second time around).

EMeD was instrumented to collect data about the user’s
performance, including actions in the interface (e.g., com-
mands invoked and buttons selected), the knowledge base
contents at each point in time, and the time at which each
user action takes place. These provide objective measure-
ments about task completion time and the use of specific
features. Since this data was insufficient to understand
what things users found hard and difficult to do with the
tool or why a certain action was not taken, we collected ad-
ditional information during the experiment. We asked users

0

2

4

6

8

10

12

14

16

18

Familiar with KB
environment

Familiar with related
AI technology

Trained in CS No formal CS
background

us e rs

c
o

u
n

t

with EMeD class A with EMeD class B

Ablated version classA Ablated version class B

Figure 3: Average number of hints given to each group of
subjects during the preliminary user study.

to voice what they were thinking and what they were doing
and recorded them in transcripts and in videotapes (during
the experiments with domain experts). We also prepared a
questionnaire to get their feedback, where instead of ques-
tions with free form answers we designed questions that
could be answered with a grade from 1 (worst) to 5 (best).

Preliminary Study
Since it is expensive to run user studies and hard to get do-
main experts in the field, we wanted to filter out distractions
which are unrelated with our claim, such as problems with
the tool that are not related to Interdependency Models. We
also wanted to understand whether our interface and KA
tool are appropriate for end users and how different types
of users interact with it, so that we can improve our tools
and our experimental methodology. For these reasons, we
performed a preliminary study before the actual evaluation
with domain experts.

The study used a spectrum of users that had gradually less
background in AI and CS (Kim & Gil 2000). We had (1) four
knowledge engineers who had not used EMeD before but
were familiar with EXPECT, (2) two knowledge engineers
not familiar with EXPECT but that had experience with
knowledge-based systems, (3) four users not familiar with
AI but had formal training in computer science, and (4) two
users with no formal training in AI or CS.

Since a major goal of this preliminary study was to under-
stand our KA tool, we allowed the subjects to ask for hints
when they were not able to make progress in the task (this
was not allowed in the final evaluation). These hints allow
us to categorize the basic types of difficulties experienced
by users and adjust the tool based on them.

Figure 3 shows the number of hints given to the subjects
in this study. More hints were always needed with the ab-
lated version. The number of hints increases dramatically
when subjects lack CS background. We analyzed all the
hints, and separated them into two major categories. Class
A hints consist of simple help on language and syntax, or
clarification of the tasks given. Since syntax errors are
unrelated to our claims about IMs, we developed a Struc-
tured Editor for the new version of EMeD (version 2) that
guides users to follow the correct syntax. Figure 4 shows
the new editor which guides the users to follow the correct

Figure 4: Structured Editor.

syntax. Users can build a method just using point and click
operations without typing.

Class B hints were of a more serious nature. For exam-
ple, users asked for help to compose goal descriptions, or to
invoke a method with the appropriate parameters. Although
the number of times these hints were given is smaller and
the number is even smaller with EMeD, they suggest new
functionality that future versions of EMeD should eventu-
ally provide to users. The subjects indicated that sometimes
the tool was showing too many items, making it hard to read
although they expected this would not be a problem after
they had used the tool for a while and had become used to it.
Since these presentation issues were affecting the results of
the experiment and are not directly evaluating the IMs, the
new version of EMeD (version 2) has more succinct views
of some of the information, showing details only when the
user asks for them. Other hints pointed out new ways to
exploit IMs in order to guide users and would require more
substantial extensions to EMeD that we did not add to the
new version. One area of difficulty for subjects was express-
ing composite relations (e.g., given a military task, retrieve
its assigned units and then retrieve the echelons of those as-
signed units). AlthoughEMeD helped users in various ways
to match goals and methods, in some cases the users still
asked the experimenters for hints and could have benefited
from additional help. The fundamental difficulties of goal
composition and using relations still remained as questions
for the real experiment.

In addition to improving the tool, we debugged and ex-
amined our experimental procedure, including tutorial, in-
strumentation, questionnaire, etc., especially based on the
the results from the fourth group.

We found out how much time end users would need to
learn to use our tools. The tutorial given to the users was
done with simpler sample tasks from the same knowledge
base. The training time was significantly longer and harder
for the subjects with no technical background (2 hours for
knowledge engineers and 7.5 hours for the project assis-

tants). More details of this study are discussed in (Kim &
Gil 2000), showing that even the end users were able to
finish complex tasks, and that the KA tool saves more time
as users have less technical background.

As described above, we extended our tool based on the
pre-test results, creating a new version of EMeD (version
2). The next section describes the evaluation with domain
experts with this new version of EMeD.

Experiment with Domain Experts
The participants in this experiment were Army officers fa-
cilitated by the Army Battle Command Battle Lab (BCBL)
at Ft Leavenworth, KS. They were asked to use our KA tools
to extend a knowledge based system for critiquing military
courses of action. Each subject participated in four half-day
sessions over a period of two days. The first session was a
tutorial of EXPECT and an overview of the COA critiquer.
The second session was a tutorial of EMeD and a hands-
on practice with EMeD and with the ablated version. In
the third and fourth sessions we performed the experiment,
where the subjects were asked to perform the modification
tasks, in one session using EMeD and in the other using the
ablated version. Only four subjects agreed to participate in
our experiment, due to the time commitment required.

An important difference with the previous study is that
during this experiment subjects were not allowed to ask for
hints, only clarifications on the instructions provided. As
soon as a participant would indicate that they could not
figure out how to proceed, we would terminate that part
of the experiment. In order to collect finer-grained data
about how many tasks they could complete, we gave each
subject four knowledge base modification tasks to do with
each version of the KA tool. The reason is that if we gave
them one single task and they completed almost but not all
of it then we would not have any objective data concerning
our two initial hypotheses. The four tasks were related,
two of them were simpler and two more complex. The
easier tasks required simple modifications to an existing
method (e.g., generalize the existing methods that compute
the required force ratio for “destroy” tasks into methods that
can compute the ratio for any military tasks in general). The
more complex tasks required adding new methods, such as
the second method shown in Figure 1.

Results and Discussion
The main results are shown in Figure 5. Figure 5-(a) shows
the average time to complete tasks (for the completed tasks
only). None of the subjects was able to do the more com-
plex tasks with the ablated version of EMeD. Where data
is available (the easier tasks), subjects were able to finish
the tasks faster with EMeD. Figure 5-(b) shows the number
of tasks that the subjects completed with EMeD and with
the ablated version, both by task category and overall. The
solid part of the bars show the number of tasks completed.
We show with patterned bars the portionof the uncompleted
tasks that was done when the subjects stopped and gave up
(we estimated this based on the portion of the new knowl-
edge that was added). Figure 5-(c) shows the same data

0

2

4

6

8

10

12

14

easier
task 1

easier
task 2

more
complex
task 1

more
complex
task 2

All

with EMeD

ablated version

0

1

2

3

4

5

6

7

easier task 1 easier task 2 more complex
task 1

more complex
task 2

KA tasks

A
ve

ra
ge

 T
im

e
(m

in
)

with EMeD
ablated version

LEGEND:
indicates total tasks

(a) Average time to complete tasks

(b) Tasks completed

(c) Tasks completed (for each subject)

0

1

2

3

4

s ubjec t 1 s ubjec t 2 s ubjec t 3 s ubjec t 4

w ith E M eD

ab lated vers ion

Figure 5: Results of the evaluation with domain experts.

but broken down by subject1. The results show that on av-
erage subjects were able to accomplish with EMeD almost
twice as many tasks as they accomplished with the ablated
version. The results support our claims that Interdepen-
dency Models can provide significant help to end users in
extending knowledge bases.

It would be preferable to test additional subjects, but it is
often hard for people (especially domain experts) to commit
the time required to participate in this kind of study. Given
the small number of subjects and tasks involved it does not
seem appropriate to analyze the statistical significance of
our results, although we have done so for some of the initial
experiments with EMeD with a t-test showing that they
were significant at the 0.05 level with t(2)=7.03, p < .02.
Gathering data from more subjects may be more reassuring
than using these tests for validation.

Our experience with these experiments motivates us to
share a few of the lessons that we have learned about knowl-
edge acquisition research:

� Can end users use current KA tools to modify the

1We had noticed early on that Subject 4 had a different back-
ground from the other three, but unfortunately we were not able to
get an alternative subject.

Functionality Avg No. Usefulness No. Users
invocations rating who used it

Method Proposer 10.5 (1.25) 4.7 4
Method Sub-method Analyzer 8.5 4.3 4
Method-Capability Hierarchy 2.75 4.5 2

Global-Error Detector 3 3.3 4

Table 1: Average Use of EMeD’s Functionality.

problem-solving knowledge of a knowledge-based sys-
tem? How much training do they need to start using
such KA tools? Would they be able to understand and
use a formal language?
As we described earlier, we spent 8 hours (two half-
day sessions) for training. They spent roughly half of
that time learning EXPECT’s language and how to put
the problem-solving methods together to solve problems.
The rest of the time was spent learning about the KA tool
and its ablated version. We believe that this time can be
reduced by improving the tool’s interface and adding on-
line help. We also recognize that more training may be
needed if users are expected to make much more complex
changes to the knowledge base. At the same time, if they
did not need to be trained on how to use an ablated version
of the tool they would not need to learn as many details
as our subjects did.
Our subjects got used to the language and could quickly
formulate new problem-solving methods correctly. They
did not seem to have a problem using some of the complex
aspects of our language, such as the control structures
(e.g., if-then-else statement) and variables. It took sev-
eral examples to learn to express procedural knowledge
into methods and sub-methods and to solve problems.
EMeD helps this process by automatically constructing
sub-method sketches and showing the interdependencies
among the methods. Retrieving role values through com-
posite relations was also hard. Providing a better way to
visualize and to find this kind of information would be
very useful.
As a result of this experiment,we believe that with current
technology it is possible to develop KA tools that enable
end users to add relatively small amounts of new problem
solving knowledge, and that they can be trained to do so
in less than a day.

� How much do Interdependency Models help? What
additional features should be added to our KA tools?
Overall, the Interdependency Models exploited via dif-
ferent features in EMeD were useful for performing KA
tasks. Table 1 shows the average use of each of the Com-
ponents of EMeD, in terms of the number of times the
user invoked them2. The subjects were very enthusiastic
about the tool’s capabilities, and on occasion would point
out how some of the features would have helped when
they were using only the ablated version.

2We show the number of times the users selected them, except
for the Method Proposer where we show the number of times the
system showed it automatically as well as the number of times
selected (in parenthesis) when applicable.

According to the answers to the questionnaire, using
EMeD it was easier to see what pieces are interrelated.
That is, visualizing super/sub method relations using
Method Sub-method Analyzer was rated as useful (4.3/5).
Also detecting missing knowledge and adding it was eas-
ier with EMeD’s hints. Highlighting missing problem-
solving methods and creating initial sketch based on in-
terdependencies (by Method Proposer) were found to be
the most useful (4.7/5).
The Structured Editor used in this version of EMeD pro-
vided very useful guidance, and there were less errors for
individual method definitions. The Local-Error Detector
was not used for the given tasks.

� What aspects of a modification task are more chal-
lenging to end users?
Almost everyone could do simple modifications, which
required that the subjects browse and understand the
given methods to find one method to be modified and
then changing it.
Some subjects had difficulties starting the KA tasks, when
EMeD does not point to a particular element of the KB to
start with. Although they could use the search capability
in EMeD or look up related methods in the Method-
Capability Hierarchy, this was more difficult for them
than when the tool highlighted relevant information.
Typically, a KA task involves more than one step, and
sometimes subjects are not sure if they are on the right
track even if they have been making progress. A KA
tool that keeps track of what they are doing in the con-
text of the overall task and lets them know about their
progress would be very helpful. Some of the research
in using Knowledge Acquisition Scripts to keep track
of how individual modifications contribute to complex
changes (Tallis & Gil 1999) could be integrated with
EMeD.

� How do KA tools need to be different for different
kinds of users
We did not know whether end users would need a com-
pletely different interface altogether. It seems that a few
improvements to the presentation in order to make the
tool easier to use was all they needed. We did not expect
that syntax errors would be so problematic, and devel-
oping a structured editor solved this problem easily. On
the other hand, we were surprised that end users found
some of the features useful when we had expected that
they would cause confusion. For example, a feature in
the original EMeD that we thought would be distractive
and disabled is organizing problem-solving methods into
a hierarchy. However, the feedback from the end users
indicates that they would have found it useful.
Although EMeD is pro-active in providing guidance, we
believe that some users would perform better if we used
better visual cues or pop-up windows to show the guid-
ance. As the users are more removed from the details,
the KA tool needs to do a better job at emphasizing and
making them aware of what is important.

Conclusions
In this paper, we presented an evaluation of a KA tool
for acquiring problem-solving knowledge from end users
who do not have programming skills. We described the
experimental procedure we have designed to evaluate KA
tools, and how we refined the design with a preliminary
user study with users with gradually less background in AI
and computer science. The KA tool that we tested exploits
Interdependency Models, and the results show that it helped
end users to enter more knowledge faster. We also discussed
additional lessons that we have learned that should be useful
to other knowledge acquisition researchers.

Acknowledgments
We gratefully acknowledge the support of DARPA with
grant F30602-97-1-0195 as part of the DARPA High Per-
formance Knowledge Bases Program. We are indebted to
the many subjects, especially the military officers from the
Army Battle Command Battle Lab (BCBL) at Ft Leaven-
worth, KS, who participated in the experiments for their
time and their patience. We would like to thank Surya Ra-
machandran, Marcelo Tallis, and Jim Blythe for their help
during the experiment. We also would like to thank Jon
Gratch for helpful comments on earlier drafts.

References
Bareiss, R.; Porter, B.; and Murray, K. 1989. Supporting
start-to-finish development of knowledge bases. Machine
Learning 4:259–283.
Basili, V.; Selby, R. W.; and Hutchens, D. H. 1986. Exper-
imentation in software engineering. IEEE Transactions in
Software Engineering SE-12(7).
Cohen, P.; Schrag, R.; Jones, E.; Pease, A.; Lin, A.; Starr,
B.; Gunning, D.; and Burke, M. 1998. The DARPA
High Performance Knowledge Bases Project. AI Magazine
19(4).
Cypher, A. 1993. Watch what I do: Programming by
demonstration. MIT Press.
Eriksson, H.; Shahar, Y.; Tu, S. W.; Puerta, A. R.; and
Musen, M. 1995. Task modeling with reusable problem-
solving methods. Artificial Intelligence 79:293–326.
Fikes, R.; Farquhar, A.; and Rice, J. 1997. Tools for assem-
bling modular ontologies in Ontolingua. In Proceedings
of the Fourteenth National Conference on Artificial Intel-
ligence, 436–441.
Gil, Y., and Melz, E. 1996. Explicit representations of
problem-solving strategies to support knowledge acquisi-
tion. In Proceedings of the Thirteenth National Conference
on Artificial Intelligence.
Kim, J., and Gil, Y. 1999. Deriving expectations to guide
knowledge base creation. In Proceedings of the Sixteenth
National Conference on Artificial Intelligence, 235–241.
Kim, J., and Gil, Y. 2000. User studies of an
interdependency-based interface for acquiring problem-
solving knowledge. In Proceedings of the Intelligent User
Interface Conference, 165–168.

Marcus, S., and McDermott, J. 1989. SALT: A knowl-
edge acquisition language for propose-and-revise systems.
Artificial Intelligence 39(1):1–37.
Mitchell, T.; Mahadevan, S.; and Steinberg, L. 1985.
LEAP: A learning apprentice for VLSI design. In Pro-
ceedings of the 1985 International Joint Conference on
Artificial Intelligence.
Olson, G. M., and Moran, T. P. 1998. Special issue on
experimental comparisons of usability evaluation methods.
Human-Computer Interaction 13.
Runkel, J. T., and Birmingham, W. P. 1995. Knowledge
acquisition in the small: Building knowledge-acquisition
tools from pieces. Knowledge Acquisition 5(2):221–243.
Schreiber, A. T., and Birmingham, W. P. 1996. The
Sisyphus-VT initiative. International Journal of Human-
Computer Studies 44(3/4).
Self, J. 1993. Special issue on evaluation. Journal of
Artificial Intelligence in Education 4(2/3).
Sisyphus. 2000. Sisyphus projects.
http://ksi.cpsc.ucalgary.ca/KAW/Sisyphus/.
Swartout, W., and Gil, Y. 1995. EXPECT: Explicit rep-
resentations for flexible acquisition. In Proceedings of the
Ninth Knowledge-Acquisition for Knowledge-Based Sys-
tems Workshop.
Swartout, W. R.; Paris, C. L.; and Moore, J. D. 1991.
Design for explainable expert systems. IEEE Expert 6(3).
Tallis, M., and Gil, Y. 1999. Designing scripts to guide
users in modifying knowledge-based systems. In Proceed-
ings of the Sixteenth National Conference on Artificial In-
telligence.
Tallis, M.; Kim, J.; and Gil, Y. 1999. User studies of knowl-
edge acquisition tools: Methodology and lessons learned.
In Proceedings of the Twelfth Knowledge-Acquisition for
Knowledge-Based Systems Workshop.
Terveen, L. 1991. Person-Computer Cooperation Through
Collaborative Manipulation. Ph.D. Dissertation, Univer-
sity of Texas at Austin.
Wielinga, B. J.; Schreiber, A. T.; and Breuker, A. 1992.
KADS: a modelling approach to knowledge acquisition.
Knowledge Acquisition 4(1):5–54.
Yost, G. R. 1993. Knowledge acquisition in Soar. IEEE
Expert 8(3):26–34.
Zelkowitz, M., and Wallace, D. 1998. Experimental mod-
els for validating computer technology. IEEE Computer
31(5):23–31.

